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1. INTRODUCTION

1.1 Preliminaries

For the estimation of the mean of a finite population from
samples drawn with equal probability and without replacement the
sample mean is almost universally recommended. Indeed, it has been
shown by Hartley and Rao [1968] and independently in a somewhat
different context by Royall [1968] that among the class of estimators
described as "scale load estimators" it is the only ome which is
unbiased uniformly in the parameters of the population, Accordingly,
among the class of uniformly unbiased estimators the sample mean
is the only admissible competitor and is, therefore, "best" in
any competition including that of minimum variance estimators.

Because the arithmetic mean of a random sample is always
unbiased and because it has a variance that is a function of only
the population variance and the sample size, it is a safe estimator.
That is, even when there is no prior knowledge of the population
distribution one still can be sure of a predictably "good" estimator.
However, there are many occasions when sufficient prior knowledge
of the population is available to limit the class of populations to
those ‘or which the population mean may be more adequately estimated

by some statistic other than the sample mean.

The citations on the following pages will follow the style
of Biometrika.
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1.2 Objecttyes

~
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When the situation arises that the population being sampled
is known, a priori, to have characteristics that place it in a more
restricted category, the question rightly may be asked as to whether
the condition of uniform unbiasedness might not be dropped and
the bias and variance be combined into a single measure of mean
square error. The purpose of this research is to investigatg a
class of estimators, which ghall be called ™root estimators™, that
will usually have smaller mean square error than the arithmetic
mean for certain classes of populations.

Root estimators, in general, are of the form

]
m 1 B <%
y* = L C = I (Y ) .
jui 4 [Pga1

The particular "root estimators" which will be investigated are:

(1) The square-root estimator, (Section II), y = Ci;'+ Céﬁz

vwhere u, yilz, which may be useful in the estimation
of the means of populations which consist of positive

quantities only;

(2) The cube-root estimator, (Section III), y = (1-C)y + Cv°

where v, - yi/3, which may be useful in the estimation

of the means of populations which consist of both positive

and negative quantities.
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Each estimator is to be a weighted sum of the mean of the observa-
tions and the respective jth pover of the mean of the jth roots
of the observations., It is the values of the Ci' the weighting

constants, that are to be optimized.
1,3 Procedure

For a specific known population of values the distribution
of the appropriate roota of these values can be determined mathe-
matically through well known and established précedures. It is
then possible to express y in terms of the k statistics of this root
distribution and through it to determine the bias and error mean
square of the estimator in terms of the k parameters of the root
distribution, It is then possible to investigate the properties
of the root estimator for various sample sizes.

In many practical sampling applications the sampler does not
know the exact form of the population distribution but does know

certain facts about it. In particular, he may know that all values

are positive and have a large positive skewness., In another case,
he may know that most values are zero with only an occasional
deviation from zero which may be either positive or negative. In
order to make & 'root estimator" useful in such applications it

nust be determined:

(1) 1If there i{s a broad class of population distributions

for which s particular value of C will substantially
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reduce the mean square error;

(2) How much loss of efficiency the estimator will suffer

if the population sampled is not in this class.

ety —

These two goals will be investigated through mathematical
wmodzls, deriving the appropriate relationships and then applying ;
them to various standard probability distributions that range f
across a broad class of population distributions. Graphs of twelve
of these distributions are shown in Figure 1. The results will

then be tested on real population data for verification of

practicality.




2. THE SQUARE-ROOT ESTIMATOR
2.1 Introduction

One of the most common types of populations encountered is
made up of values that are all positive. Such distributions are
apt to be skewed positively because they are bounded at the lower
end but not at the upper end, or for other reasons. It is in such
a class of distributions that the square-root estimator will be
tested,

The square-root transformation has a greater effect the
further a number is from 1. It, therefofe, has the effect of reducing
the amount of positive skewness while reducing the variance.
Negatively skewed distributions, on the othey hand, will have the
skewness emphasized by the square~root transformation.

The square-root estimator will be defined, in general, by
} = c1§ + cziz, or 1f C; + C, =1, by ; = (1-C)y + Ca%. It would
be more appropriate to start with a discussion of the general

case, but for reasons of clarity the general case will be discussed

in Section 2.3,

2.2 The Square-Root Eatimator of the

Form y = (1-C)y + o

2.2.1 Definitions

a. Yy {=1, ..., n; a set of observed values picked with

1




equal probability and without replacement from a

population of all positive quantities.

b. ;; = Ygs the sample mean.

Bl
-~

c. V45 the population mean.

.l
]
Z]=
[l x 1

d. V(y) = E(y—'Y—)z; the variance of the y distribution.

e 4 = 412
R T A
n
f. E"%z“r
: 1

g. ¥y = (1-C); + CGZ; the square root estimator,
h. C; the weighting factor which is to be determined.
i. V(y) = E{y - E(y)]z; variance of y.

j. B(y) = E(y—?); bias of y as an estimator of Y.

] k. BMS(y) = E(p-D)2 = V() + [B(M1>.

° £« R = EMS( ); efficiency ratio of EMS(y) over 'OR
v(y)
m, k statistics {Kendall and Stuart, Vol. 1, p. 280] .

1 0
(1) kl-;‘-zu =y
1l
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2 4
+ 120S,5] - 65, }
a (%)
S, = I uJ s n = n(n-1) (n-2)(n-3) .

The use of k statistics is desirable because in each case

E(ki) = ¢,; that is, the value one would attain 1{f n = N, The

i
desirability is further enhanced by the availability of the various

relationships which have been worked out by Wishart [1952].

2.2,2 Optimizing the square-root estimator for finite populations

The great advantage of using y = (1-C)y + Ca® is that y

can be expressed in terms of k statistics of the square roots (“1)’

n n

yedry =isudalod i) 4P . @&, + 3 L @2
1 1

Hence,

y« Q-0IEDK + ] +ad = a-0EDK, +¢ . @.2.2)



Now, since we are to be estimating Y, we shall define

B(y) =~ E(y) - Y as the bias and determine

B = -0 ED) £y + 20d)

n

by utflizing the relationships from Wishart [1952]. They make

EG) = 0-0EDe, + Gk, + k)

n=-1 1
-0k + 3% * 1

1
= K, + 11 ~ CKz(l - ;)

- g(u-—'ﬁ)zd- 1 g I uu, ~Ck (l—l)
RS W} ’&D ., Priie 2 n
-—-l-g 2 _ 1 g 2+ 1 g £ u,u, - Cx (l-l)
¥ ] Y T NR-D 1 Yy N1 ) s 19 y

1 ¥ o 1 (N N
& ——F oy, = Zu, + I Zu,u
N~1 1 1 7 N(R-D) 1 i 1=l Jpi 173

1 1

4= I uu, ~Ck,(1-)
N 3
1. 2 1
Niui-c':Z(l-;) :

e 2 A




K
=Y - Cncz(l - %) [L.e., Y = Ky + Klll .
Therefore,
By) = B - ¥ = -a,(1 - D), (2.2.3)
Similarly the variances and covariances of the k statistics
can be determined.
V(ky) = Elk, - E(k)]? = EGD) - [E(k)12
BT k, + g, - <
R T + N %]
V() = (2 - 3, + 200 - %5, (2.2.4)
Ve =BG - (20517 = Bk k, 4 1,07 - (2G K, + 1,012
'E['l];?k§+k§1 7 Ygkyy1- Ay 7 TRERE TN
-l g+ €22 * 2T %29) * [;2n_ETY €22 * 5 %211 * *1111]

B ]
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2.2 2 1 2
+adn fa1 T ey S22 t <oy - [u 4 ¥ %2 tRT <22)
2 4 2.2 2
- [§gery %22 Y ¥ f211 T f111d C BN <31 §EADY K22 t %211!
2
Vi) = 3 [%I - %]"4 + %‘% 1) kg * “(1 )"211
n
n-1 1
+ 2 {( )[n(n-l) N(N—l)] n(N-l) n )} K22 . (2.2.5)
Cov(k®,k.) = E(k’k.) - E(k2) E(k,)
1°%2 1%2 1 2
1 2 1 1
- E[;f ky + 3 kg + 3 Ky t gl - DDk Hxle
1 2 1 2
7% o fa ta k2t Ta %2 T %2
-1 , + 2 Koy + = Koo + K [« K,,]
2% T 22 % %01 "n 22 * ¥ 1 *22
- [3 Koy = 2 .tk ]
N "31 - N(N-1) "22 211
2 1 1, 1 2
Cov(’kl, kz) - [;- - -N-] [; Klo - ?3:1- Kzz + 2K3K1] . (2.2.6)

mm e o s T e il
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Now V(y)and V(y)can be derived in terms of the kappa parameters

of the distribution of u.

n-1,2 n-1

V@ = VIEDK, + k11 = ED%ay) + vad) + 2ED) covik,, &

n-l 2 1 1
G = 9%, *+ 265 - FoD%2]
1.1 1 4.1 1 1 1
RGP AR TP G T P

n-1 1 1 1
+2 {¢ 2 G T FeD) T aeD G )} K22

n-1, 1.1 1 2 .,1 1
+ 260 GG -§e - @GP 26 - PRl -
VG = G =P Ix, +begy + by ] + 2{ED S - D

2n-1

n~-1 1 1 1
+ )Gy T R T Goe 1))( - Wleyy - @.2.7)
v = 1~02EDH? vk + vad) + 20-0EDY covik,, kD)
- V® + e EDH? vy - 26D covik,y, KB (2.2.8)
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BEG) = V() + By = ca - Hica -Hed + & -Hiea-b-2¢,

4,1 1

+ 20D A - DT - §D + G -Pra
| \
=4 - Db+ (2.2.9)

i

It can be seen iﬁ (2.2.9) that for EMS(;) to be less than V(¥) %
the bracketed term must be negative. It is also evident that the
bracketed tetm\ia a quadratic in C. This makes minimizing quite
simple by the ﬁsual process of equating the first derivative with

respect to C to zero.

\
3

IMS(y) _ n-1,2 -1, .. 2, n-1,2 2
3C 2(C'-l)('—n—) V(kz)-Z(T) Cov(kz, kl). + 2C( = ) | Ky

vhich, when equated to zero and solved for C, yields ]

3

(n-l + 2¢

N-n
Y~ [k, + 2¢ ]
Gy = = N-_ 4 31 s n>1 (2.2.10)

1 1 1 1
' K+ Q- W< T IGT T w522

22

2.2.3 The square-root estimator for infinite populations

. |
Analysis of these relationships is facilitated by examining

|
f the limiting equations as N + =, 1Indeed, if N is moderately large

there is little loss of accuracy by doing so.
\
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[l
w
PR PR PR K T SO L RIPY..

= 1 2
1w V“(y) - {x" + luc3n<1 + b4y

+ 2%} (2.2.11)
N .

- C 1 1
g:muw-;(x-y{wu—;j—ug
-

+ [C(otl) - 4]&2

ey} + V() (2.2.12)

1 2
. -!-1_—1) [Klo + 2:2 + 2n<3|:1]

;:L:Co lx +n+1 5 . (2.2.13)
n 4 n-1l"2

The disappearing of such terms as ka3 is8 due to the fact

that 1im «,, = k.k,, etc,
N_.«‘,31 371

Examination is further facilitated by the substitution of the
equivalent central moments of u

xl-U

by = B

u3 - E(u‘ﬁ)a

R
W
[}




The optimum weight becomes, thereby,

1 2 2
nt+l 2
n-1 "2

1 2
'E[N,‘ - 3“2] +

aly, - ug + zﬁh3]
- 3 7 3 B > 1 (2.2.14) :
(a-1)u, + (n°-2043)u,

Noting at this point that Co is positive if LA + Zﬁh3 > u%»

consider the inequality

2 2.2 4 2.2 2 3

0 < E[(x=4)" = E(x=u)"]" = E(x-y) - [E(x~u)"]1" = u, = u, !
which shows ¥, > ug. It i8 evident, then, that Y, + iﬁhz > ug

if u3 > 0; that is, if the diatribution of the square-root transformed ;

distribution has a positive third moment. %

~ -—
Now, converting EMS(y) to moments about U;

PSSR LN

ms(y) = Sa-itca-D - 210u,-321 + (@) - 412 - 4By} + VD

AR

= 2a-D{cED - 21y, + [c+-2) + 242 - 4Ty} + VD)

(2.2.15)

It has already been shown that C > 0 when Hy > 0. Inspection of ;

(2.2.15) further indicates that a large U, cauges s smaller EMS(y);

more evidence that a population which is highly skewed to the right




is best benefitted by the square-root estimator.

2.2,4 The bias of the square-root estimator

The bias of y at CO is

2
—[Ka + 2K2 + K3K1]

K
_ﬁ_+ n(n+l) <
Ky n-1 2

B(y) = -Gy - ':li)"z -

u Uu
4 3
Syttt
I "2
o
4 n+l
— - 3+ oG
- uz

which decreases with increasing n, but at a very slow rate when n

is small, For example, when n = 2, 2é§%ll = 6., In order to double

i
this value it is necessary to make n = 10, Unless —%—ia small,

u
2
even doubling Eé%%ll does not halve the bias.

2.2.5 Types of distributions for which EMS(y) can be made

substantially less than V(y)

The investigations of the types of distribution functions for
which the error-mean-square can be substantially reduced will be

facilitated by the following two theorems.

Theorem 1. The value of C0 is invariant to the scale parameter (a

multiplicative constant).




Proof: Let Yy be distributed as £(y), and

1
u, = 2
1%
Let
* =
yi = byy
so that
R = % = -
u1 /;; /5;; bui .
Then

and similarly
Y* = bY

- 1 1 -
| X m = ™
u* = = fu} n}:ﬁui /o u

2

y* = (1-C)y* + Cur? = b(1~C)y + bCu” = by

B(y*) = E[y* - T#] = bE[y - T] = bB(Y) -

Iy
B

4
A
i
i
[
B

!
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V%) = V(by) = b2V(y)
and
BiS(r*) = bVGR) + b [BEI” = b (ES(R]
Therefore, the value of MS(;*) will be minimized by minizing

EMS(y) which is accomplished by Cqe

»
Theorem 2. The efficiency of EMS(y), (R) is invariant to the

scale parameter,

Proof: Let vy be distributed as f(y) and V(y) be the variance

of ; for a sample of size n,

a

R = EMS(3) =Y L [B]?
VO R 6]

Now, letting yi = byi as in Theorem 1,

V@G*) = V(by) = bVF)
V(y*) = V(by) = b2V(y)

B(y*) = bB(Y) .




Then

pe - BSOY _yGw |, Be)% i@ | viean? .
VGY  VGH VEH bVG) bV

Theorem 3. The values of CO and R are not invariant to the
position parameter. That is, a constant added to g 4
every element of the population will change the

value of co and R,

Proof: Let y ~ f(y) such that E(y) = Y and V(y) = oz.
Then, for a simple random sample of size n, E(y) = Y and V(y) = ozln.

Letting y; -y, + b, then E(y*) = Y + b and V(y*) = 02. Again,

for a simple random sample of size n E(;*) =Y+ b and V(;*) - ozln,
that is, there is no change in the variance of the unbiased
estimator.

But, letting uz - v’;f and ;* = (1-C)y* + C;*z, we see that

E(y*) = (1-C)[F + b] + CE(kiz)

(1-C) (T+b) + CIE «f + )

[T + b) -c[?+b--t1;.<5-qz]

2
1

2

= 1
[Y+b]-C[x2+x +b-;n5-xi]
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= [Y + b] = C[(x,~ % %) + (Ki - ‘{2) + bl

< n-1 1 2 2
= [Y+Db] - C(—n—) K, = C[-E(xz—ncg) + (Kl-ni ) +b]
‘ —
Therefore, the bias of y* ae an estimate of Y + b is
B(“*) - B(‘) - C[l(lt -~c¥) + (Kz -K*Z) + bl
T = By nr2” %2 1751 .

Now, since

g* = (1-C)y* + Cur?

(1~C) G+b) + Can?

(1-C)y + Ca*? + (1-C)b

(1-C)[(-‘-‘§3-) K, + ki] + Ckirz + (1-C)b

we haye

vG" = -0’ ED%K,) + a-aFad) + cvagd

+20-02E) coveiy, 1) + 2001-00 D) cove,, ki)

+ 2¢(1=C) Cw(ki, k{z)




- 102 &Ly, + vad) + ce-2) vad)

n-1 2 n~-1
+ 2(1-C) (T) Ccv(kz, kl) - ZC(I—C)(—;—) Cov(kz, k

n-1 2 2 2
+ 2¢(1-C) ) Covik,, k%) + 2¢(1-C) Cov(ky, k)

20

2
1)

- V(§) + C(C-2) V(ki) + CZV(kIZ) + 2c(1~C) Cov(ki, kIz)

- 200-0ED) {Covik,, K) - Cov(k,y, kD))

And then

BMS(3%) = V(y*) + (BGy*)]2

- V() + ce-2vad) + Pva?) + 2001-0) Covlid, K

- 201-0) &Y {covli,, kD) - Coviky, kiD)}

+ B2 + CZ[;];'(KZ-K‘;) + (Ki—xiz) + ]2

- 2B(9) ClEt =) + (Z-th) +B] .

2
*
)




So,

2

BIS(y) = BMS(y) + C(C-2V(KD) + C¥ag?) + 20(1-0) Cov(ie], k)

- 201-0) &Ly {cov(k,, KD) - Cov(k,, kD))

21, . 2_ .2 2
+C[;(a<2 K2)+(K1 K1)+b]

- 23(;)0[%—(:2 -K‘z‘) + (ni- xiz) + bl .

It can be seen from this equation that the EMS(y*) is not equal
to EMS(y), and that the value of C which will minimize it will be
a function of b, These facts coupled with the fact that

V(y*) = V(y) are sufficient to show that

pe = BISOY) | BISGY) | g
vG*) v(y)

An example later in this section will further illustrate this
point,

Theorems 1 and 2 will allow investigations of such distributions

]
[-]
zI
¢
®
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by letting 8 = 1, and then apply the results with equal effect

to the same distribution with any other value of 8. Om the other
hand, distributions that differ by an additive constant will not
have the same optimum value of C nor will the square-root estimator
have equal efficiencies on these distributions.

In order to investigate the efficiency and utility of the
square-root estimator, three specific families of distributions
were examined. These families were chosen because they represent

a vide spectrum of population forms,
(1) The gamma distributions; £(y) = ?}'- y“ e.y, 0<y<wo,

Due to Theorems 1 and 2 any results applicable to this

distributions will also be applicable to

— 7 e-y/B
al B

£t(y) =

for any value of 8,
Making the transformation u = yll 2 yields

3
£(u) = all' uZQfl e-u

from which the first four central moments can be calculated for
various values of a, We shall consider the distributions generated

by a=0, 1, 2, and 3. These values are convenient because




23

£(y) me”Y

is fairly skewed, while
£(y) = % y> &7

is rather symmetrical with only a slight poaitive ekewness.

Figures 2(a), 2(b), 2(c) and 2(d) show the relative efficiencies
(R) of a number of different distributions for n = 2, 3, 5 and 10,
respectively. The top four of these efficiency curves (number 1,
2, 3, 4) are of the gamma distribution with a = 3, 2, 1 and O,
respectively. The accuracy to which these graphs can be read is
sufficient for practical purposes. Exact values of R and Co for
the various distributions are giver. in Table 1.

It can be seen that the more symmetrical the parent distribution
the less gain attainable, Howerer, it should also be noticed
that for values of C between 0 and 2,5 there is, in every case,
some improvement over V(y). This is an important fact as it indicates
that the square-root eatimator will give an improvement in mean
square error for any value of C between O and 2.5 as long as the

parent distribution is at least as skewed as
-1 -
(@ =gy e’ .

Te illustrate Theorem 3, consider the distribution

e et el ok ke s st G

L g A
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fa) =& oy

This is exactly the same distribution as ?
£(y) me 7 ‘

except that 1 has been added to each population value. The yalues

shown below illustrate the differences caused by this sghift,

£(y) me ;3> 0 £(x) = e.(x‘l); x>1
U= .8862 U = 1,3792

Uy = .2146 Hy, = 2

Hy = 0627 Hy = 3.0688

H, = 1495 B, = .0413

Co = 1,49 C0 = 4,11

n=2

R= 84 R= ,70

One needs not fear dire consequences because of such
differences, however., If, in each case, a value of C = 2 had been

used, the efficiencies attained would have been .86 and .78,

respectively.
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a=1
1 &) 4
(2) The Wishart distributions; £(y) = Tl Y e 7 .,

This group was chosen in order to investigate distributions
with a bit more skewnmess than the gamma, In fact, the square root
transformation of these distributions generate gamma distributions,

g(w) - '-0-1‘-'- ¥ e
for which the moments are readily calculated.

The effectiveness of the square-root estimator for these
distributions (numbers 5, 6 and 7) for n = 2, 3, 5 and 10 are also
shown in Figures 2(a), 2(b), 2(c) and 2(d), Again it can be
seen that the more skewed parent distributions offer greater gains
through the square-root estimator. Equally important is the fact

that any value of C from O to 4 will produce a gain in efficiency

for these diatributions with Co & 2 being the optimum value,

aBu

(3) The Pareto distributions; £(y) = ey
y

) 0<a, a <y ,

for which 8 is a scale parameter.

The Pareto distributions are reputed to be approximate for
income distributions and similar cases. These were included to

show what happens to the square-root estimator in such extraordinary

1/2

cases. The square~root transformation, u = y '~, producea

g(P) - Zau—(2q+1) . u>1 N




Moments higher than 2a-1 do not converge so the distribution
was truncated to force convergence,

In the cases of f(y) = y"2 and f(y) = 2y‘3 the square-root
estimator makes even greater gains of efficiency over ;l It is,
however, at an increasing value of C with the maximum gain

for f(y) = 2y"3

at C &2 3, If such a value of C were being utilized
and the distribution was, in reality, a gamma with o = 3 (number 1),

there would be a loss of information of approximately 4Z.

2.2.6 General Comments

Inspection of Figures 2(c) and 2(d) readily illustrate that

for larger sample sample sizes some gains are realized, but two

important facts should be noted. As the size increases the efficiency

of the square-root estimator over y becomes less and the value of
C0 approaches zero for all distributions, indicating that the
primary uses of the square-root estimator are cases where small
sample sizes are necessary.

The following three properties are quite important to the

ugefulness of the square-root estimator.

(1) EMS(y) 1s quadratic in C of the form

2

h(C) = aC" +bC +d; a >0 ,

(2) BMS(y) = V(7) when C = O,




3) EHS(;) < Y(y) only when C > 0 for pesitive populations

that yield a Hq > 0.
The implications of these properties are:

(1) For positive populations for which Uy > 0 only values

of C greater than 0 and less than zco will produce a ,
gain in efficiency and any value of C in this range

will produce a gain,

(2) 1If it is known that the population being sampled
is at least as skew as one of the standard distributions
a value of C can be established which will guarantee
that the square-root estimator will be more efficient

than y.

2.2.7 A simulation to verify the efficiency of the square-root

estimator

The efficiency curves identified by (14) in Figures 2(a),
2(b), 2(c) and 2(d) are for a set of data from Cochran [1953]. "
These data‘are, actually, a sample of 200 sizes of cities in the .
United States in 1920 and are reproduced as Table 2(a). The cities
sizes are grouped into categories of an interval width of 100,000
and the mid-points of the categories were used as representation

of the entire category. To facilitate calculation the sizes have

been coded by dividing by 50,000,




For this demonstration the 200 cities are taken to be a
population of 200 which_hns a mean value of 2,66 (2.66 x 50,000) ﬁ
and a variance of 12.564. Letting uy be the square root of the

ith category size the following central moments of the square-root

. distribution were calculated: . ;
; U = 1,437 é
Uy = «595
Mg = <953 i
B, = 2,523

It was through the use of these values substituted into equation
(2.2.15) and varying the yalue of C that the efficiency curve

was generated.

With such a population as this it is not difficult to determine
every possible sample of size n = 2 and to calculate y. For
ingtance, if C = 2 the equation for the square-root estimator is

y = (1-2)7 + 2u°

[, + 7%,
- - ZOytyy) 2= :

- 'yl [ ] y °

2




The use of C = 2 was chosen because, by referring to Figure 2(a),
it can be seen that it is a very safe value to use when n = 2,
The frequency distribution of the various values of ; are shown
in Table 2(b).

Calculation of

ms(y) = T I, (5, ~'2.66)%

shows that EMS(y) = 3.3, That makes the efficieﬁcy factor

BMS() _ 3.3
() (12,564/2)

= 525

vhich agrees with the theoretical value within rounding error.

The expectation of ; calculated from Table 2(b) is
E(y) = 2.073
wlu.ch makes the bias
B(y) = 2,073 = 2,660 = =593
According to equation (2.3.3)

B@) = <A -1, = -2)(.595) = -.595
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TABLE 2(a). DISTRIBUTION OF SIZES 1
OF 200 U.S. CITIES IN 1920 1
Population Size
X50,000 u £ ]
1 1 133 k
3 1.732 36 :
5 2.236 11 :
7 2.645 5 3
9 3.000 4 1
11 3.317 4 1
13 3.606 0 k-
15 3.873 4 1
17 4.123 0 1
19 4.358 1 '
21 4.583 2
_ Y
Y= 2.66
2 } Original population parameters
0 = 12.564
U= 1.437 )
uy, = .595
}  Square-root transformed population parameters
uy = 953 i
w, = 2.523 }

[Source: Cochran (1953) p.39].




Sample y f
1,1 1.000 8,778
1,3 1.732 4,778
1,5 2.236 1,463
1,7 2.646 665
1,9 3.000 532
1,11 3.317 532
1,13 3.606 0
1,15 3.873 532
1,17 4.123 0
1,19 4.359 133
1,21 4.583 266
3,3 3.000 630
3,5 3.873 396
3,7 4.583 180
3,9 5.196 144
3,11  5.745 144
3,13 6.245. 0
3,15 6.708 144
3,17  7.141 0
3,19 7.550 36
3,21  7.937 72
5,5 3.000 55

16 - g

TABLE 2(b).

FOR ALL SAMPLES OF SIZE n = 2 FROM SIZES

-~

OF 200 U.S. CITIES IN 1920

MSE(y) = 3.3

Sample

5,7

5,9

5,11
5,13
5,15
5,17
5,19
5,21
7,7

7,9

7,11
7,13
7,15
7,17
7,19
7,21
9,9

9,11
9,13
9,15
9,17
9,19

= 2.073;

Y

y

5.916
6.708
7.416
8.062
8.660
9.220
9.747
10.247
7.000
7.937
8.775
9.539
10.247
10.909
11.533
12.124
9.000
9.950
10.817
11.619
12.369
13.077

55
44
44
44
11
22
10
20
20

20

10

16

16

Sample

9,21
11,11
11,13
11,15
11,17
11,19
11,21
13,13
13,15
13,17
13,19
13,21
15,15
15,17
15,19
15,21
17,17
17,19
17,21
19,19
19,21
21,21

DISTRIBUTION OF SQUARE-ROOT ESTIMATOR

A

y

13.748
11.000
11.958
12.845
13.675
14.475
15.199
13.000
13.964
14.866
15.716
16.523
15.000
15.969
16.882
17.748
17.000
17,972
18.894
19.000
19.975
21.000

B(y) = 2.073 - 2.660 = -.593
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which again shows agreement within rounding error.

2.3 Square-Root Estimators of the Form

y-cl;-n- cziz, C,+Cy#1

If the restriction that the weights sum to one be relaxed
it is, of course, possible to attain even greater gains of efficiency.
Using the definitions in Section 2,2;
2

: =, o2 n-1 2
y = Cy+Cu =CIT) k, + K] +Ck;

~N

n-1
cl(—n—) kz ‘+ (Cl + Cz) kl (2.3.1)

E@ = ¢, &L , + (¢, + C,) BGD

n-1 1
Cl(_t.l—) Ky + (Cl + CZ) [; Ky + K

11:I

1

1
Cl(uc2 + Ku) + Y Cznz + Cl‘ll

- 1
ClY + (1-C) (xz + Kll) + Yy C2|c2 + cl‘ll

- 1
Y + (1--C)(|c2 + Kll) + 5 c2'<2 + Clrzu
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- cz
= Y + (C1 +-1;-- 1)|<2 + (C1 + Cz - 1)|c11
-~ cz
= 2 n-1.2
V(y) = C (———) V(k ) + (C + C ) V(k )
n-1 2
+2C,(C, + C,) &) Cov(kz, kl) (2.3,3)

BMS(y) = V(3) + [B(y)]1>

W) « 20, EH? vk + 2(c; + €,) VD)

+ 2(2c + C )( ) Cov(kz, kl)

c

-2 -c - Tz)"z + A =C - Ceylik, 4]

Equating to zero and isolating C. and C

1 2}

¢, [EDH? vy + vad) + 2ED covik,, K + Gy + k%)

2

+ ¢Vl + &b covix,, D)

K
+ (-52-+ K1) Gy + k0] = (ky + &

2
11) e

Nied i s T i v 4 b e e
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\

IEMS (3)

: ;2 . ,n=1 2
302 = Z(Cl + CZ) V(kl) + 2C1&1;0 Cov(kz, kl)

Cy )
-2 -c¢ --Dx, + A -c ey =2+

1 1~ 6 ) .

\ Again, equating to zero and isolating C, and C \
; | | 1 2 ,

K
¢, [V(k ) + (““1) Cov(k,, kf) + 0y + Kil)G?%-+ €,,)]

l

' Ky
+ C [V(k ) + ( 11) ] = (|< + Ku)( 11) .

Letting

2

E, = (Kz + Kll)
|

Ky

G—— +

m
'

2 = (&, 11) 11)

EH? yagy) + vl ) + Je=

»
|

2
—) Cov(k kl) + E1

-]
L}

2 n-1 2
V(kl) + (T) Cov(kz, kl) + Ez

2 X2 2 ' \
V(kl) + (-n— + ,

o
L}

Kll)

!

then
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AC, + BC, = E "¢
and - . |

| 4 =
\ . BC, +DC, = E, .

\
i

’ }
Solving simultaneously yields

DE, = BE
c, = 1 22 ; (2.3.4)
AD - B
AE, - BE |
c, = —2 1 21 . (2.3.5)
: AD - B ‘

! )
! |
|

All of the equations pertinent to the general square-roét
estimator are complex and extremely difficult to anal&ze critically.
ﬁbwever, the calculations for specific distributions are quite
easy with the aid of a computer, so tables have beeg prepared
showing the results of applying the general square-éoot estimator
to the thirteen standard distributioms.

Evaluation §f the optimum values of C1 and C2 appeﬁr in
Table }. It is ismediately obvious that the values are quite
dependeLt upon the form of the distribution being sampled., For
example, C

, = 0 for all of the gamma distributions, while ¢, =0

for all of the Wishart distributions. It is also interesting

e e T

!
|
]
‘
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to note that C1 + C2 2 1 for all forms and sample sizes of the

Pareto distribution,

Table 4 is a comparison of the optimum efficiency ratios of
the two forms of the square-root estimator. The efficiency ratio
of the general square-root estimator is, of course, better in all

cases if the optimum values of C, and C2 for the specific distribu-

1
tion are being used. If the specific type of distribution is

unknown it would not be possible to incorporate "workable" values

of C1 and C, that would be safe for all distributions.

2
The use of the general square-root estimator should, therefore,

be restricted to those cases where there is a priori knowledge

of the form of the parent distribution,

N e L
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3. THE CUBE-ROOT ESTIMATOR | 9
3.1 Introduction

When a population consists of both positive and negative

numbers, the square root estimator is, of course, impossible to
. use. The cube root of a negative number is defined so an estimator

of the formy = (1L -C) y + ¢33 1s suggested.

3.2 Definitions

1 |
(a) v, = y13 ‘
(b) ‘—"%g"i ‘
() k = v lé
@ k, == %'(vi -9
© ky = Ty Iy - »3

1

3 2 2 2 2
(£) k4 n(4) {(n” +n )84 - 4(n" + n)S3S1 -3(n° - n)S2

4+ 12n § S2

4
251 - 68}




1 4 3 3 2 3 2
(8) kg = F {(n” + 5n )SS - 5(n” 4 5n )sasl - 10(n” - n )8382

2

3 5
1 }

+ 20(n2 + 20)s,52 + 30(n? - u)sgs1 - 608,52 + 245

2

.1 5 4 3,2
(h) k6 n<6) {(n” + 16n" + 1lln 4n )s6

3

6(n4 + 16n~ + llu2 ~ 4n)S

2
581 - 15n(n -~ 1)“(n + 4)5452

2

10¢a® - 203 + 502 - lon)S§ + 30(n> +90%+ 2n)3452

1

3 3 2 3
+ 120(n~ - n)S3SZSl + 30(n~ - 3n° + 211)S2

2 3 2 2.2 4 6
120(n“ + zxn)s3s1 - 270(n° - n)stl + 3605,8, - 12031}

o yd
(i) S:i - ifl(vi)

3.3 Derivations of Bias and Error Mean Square

The cube root estimator will be used in the form

y=(1-0Cy+ cv? with y being expressed in terms of k statistics

of the ui's.

n -3
Since k3 = oD (o=2) 1‘.(vi - V) it is possible to expand »
the last term and solve for Evi - jn_-l)_ng_x-_ZL k3 + 3(n-~- l)klk2 + nki.

SO PRESTCI NSV SR N UYL PRICT

PPN

13 ol




Now,

8o,

or

>

E(y) =

B(y) =

vVG) =

47
n

1 zy, - L &l EDyk, + 3R Ly, + K

a - oiEh et 2k, + 3Dk K, + K+ ¢ K

y - c&hE= )k + 3k k,] (3.3.1)

@ - O1ED Dk, + 3&DKk 1 + 1 (3.3.10)

Y- c(ﬂzl-)[(“'z)s(k ) + 3E(k,k,)]

T - e @k, + 3G ky + xpxp)]

Y - C(E-'-—]'-)[(9--:-;-];)«3 + 3::2:(1]

@) (@i, + 30p0] (3.3.2)

EL2 EB2ky) + 9ED KK + V)

+ 6EH2 Eycov(ky, gk + 205D EE 22y Cov(kys k)

+ 6Dcov (i, kyky) (3.3.3)

e e e e e A ——————r




v = @ - of &H? EBRiy +9a - o EbAk,
+vad) + 60 - 02 EH? Edycovtx,, K,k

a-1, ,n-2 3 2
+ 2(1 - ©) (-;-—) (T)mv(k3, k1) f

+ 6Q - ¢) (&= )Cov(k koky) (3.3.4)

BIS(y) =~ V() + (B}

JEMS -1 -1
) . 200 - DEHE + 18(c - DEDHYE K,

+ 12 - DEH? Edyeovik,, kyk))

23 ARy covlky, 1) - 600, kykp)

n-1.2 . o¢l 2
+ ZC(T) [(T)K3 + 3x2|<1] .

Equating the derivative of ms(}) to zero and solving for C

yields
&S Cov(k3,k3)+300v (ki k)
C. = - (3.3.5)
0 A Eh [ &Ly a3 i)

where




as EHEDNE) + 9EDHVAGK) + 6ED Ecovik,, kk)) -

In order to evaluate EMS(y) it is necessary to determine
those variance and covariance tems appearing in (3.3.3), (3.3.4),

and (3.3.5). The derivations will be for infinite populations only.

2

2 2 2

2y 408,

1 nt8 —— 6o 2
- [ kg + ool %42 ¥ o1 K33 Y oDy a2y K222) T %3

6n 3
(n-1) (n-2) <2 ° (3.3.6)

1, .9 )
n

6 Vo1 2 tar <3t

Vikyky) = E(CKD) - [ECkk,)1?

_%% k6 *'-%f]‘ 4 3ntl k 2$n+1! 1
n

+ +=k
a (n -1) 33 n 411

= E[
2 51T 2 Fa

4(rt+l) Kk ntl ntl

ky22 * a1 ¥2211]

* oD %321 Y a-D) k222

- [BG kg + k)

4(otl) Lol 22
* a1 3% + 'nTn_T' z + a1 %21




2
=GRyt Ryl
1 2 3ntl o+l 2 1 2
= ==K, + = KK, + 5 K,K, + 55— K, + = K,K
I 1 S DI S PR !
2(nt3) bl 3. 2 22
*ae-D $32¥1 Y ate-D 2 ¥ aeL K2¥1 - (3.3.7) |

vad) = ead) - adi? .

Using techniques similar to those used in (22) and (23), this

yields;
3 1 .1 6 15 9 2 15 2
Vi) = 5 17 kg ¥ 35k FTF Rk ¥ 3 95+ S5
n n n n n
54 15 3 18 3 6 22 4
+ ;3 K 4K K + ;f Ky + T KaK) + - KoK) + 9K2K1) (3.3.8)

cov(ka, klkZ) = E(k3, k1k2) - E(k3)E(k1k2)

1 1 5 6 2
7 %6 ¥ 7 %s*1 * aa-D) %2 * na-D) %3

(3.3.9)

6
+ o1 K32 -
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3 3 3
Cov(ka, kl) = E(k3k1) - E(k3)E(kl)
1 3 3 3.2
= =3 % + =3 %g&; + 5 KK + L (3.3.10)
n n n
Cov(k, k, , k3) = E(k’k,) - E(k k.)E(KD)
172 1 172 172 1
1 4 3 2 6 2
A I TS T TAS B STy SLASY
n n n n
12 3 3 3 3 22
+ ;5 KaKoKy + 5 K + 2 391 + o KoKy - (3.3.11)

3.4 The Bias of the Cube-Root Estimator

n-1, . ,n+l
B(y) = -CCI IRy + 3xyK,]
is a function of the first three moments of the cube root distribu-
tion and is, therefore, sensitive to large values of these
moments. The third moment of the cube-root distribution is apt

to be small and cause little problem. The effect of 3k is not

21
80 easily dismissed. The effect of a non-zero mean on the-rbias
could be severe, especially since the mean square error is increased

by the square of the bias.
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3.5 Types of Distributions for which EMS(y) Can ;

be Made Substantially Less than V(y)

Consider the distribution of errors that would be encountered

in a corporate account audit. Most, by far, of the account entries

would be correct, i.e., with zero error. A small portion would
have errors and these errors would be both positive and negative.
One of the more onerous duties of an auditor is to determine the
average amount of error in such accounts in order to detect if

the total is substantially in error. Since he is sampling for a

rare attribute (error), his sample size usually must be quite

LN 5

large in order to be effective. An estimator which would contain

i IS A

the same amount of information with a smaller sample size would

be valuable.

it

In order to evaluate the effectiveness of the cube-root
estimator in such a situation, three types of error distributions

will be considered using the following definitions:

P = proportion of population containing error.

S = proportion of the errors which are negative,
(1) The rectangular distribution of errors,

f(y) = PS -1<y<?0

=]1-P y=20

= P(1 - S) 0<y<1l.
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In this case we are assuming that the positive errors of various
magnitudes are equally likely and the negative errors of various

magnitudes are, likewise, equally likely.

3 1
v = 3
i~
then
g(v) = 3ps v3 “1<v<0
=1 ~-P va=20
= 3P(1 - 8) 0<vz<l

Figures 3(a), 3(b), and 3(c) illustrate the gains in efficiency
which can be attained for P = .02, .10, and .20, and for S = .95
and .45 at each of these levels of P. The efficiency factor (R) is
shown as a function of C.

Extremely large gains are possible in the populations which
are only slightly unbalanced. For small sample sizes large gains
are attainable even when 19% of the population is in error to one
side of zero while only 1% are in error on the other side. For
larger sample sizes, however, the possible gains in efficiency

become much smaller and the range of values of C which will allow

gain becomes much more critical.
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(2) The uniformly decreasing distribution

f(y) = 2PS(1 + y) -1<y<o0
= (1-V) y=0
= 2P(1 -8)(1 -y) 0<y=x<1

This distribution is similar to the rectangular distribution

except that the probability of error decreases with distance from O.

Letting 1

v, = 3

A

2 3
g(v) = 6PSv (1 + v7) -1<v<0
=1 -~P . v=20
2 3

= 6P(1 - S)v (1 - v") 0<v<l

Comparison of Figures 3(d), 3(e), and 3(f) shows the same
results as occurs in the rectangular distribution except that the
imbalance does not have as great an effect on the efficiency ratio.
This, of course, is because there is a smaller effect on the first

three central moments.

(3) The parabolic distribution of errors
2
f(y) = 3PS(1 + y) -1<y<0

= ] - P y-O

= 3P(1 - S)(1 - y)>
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constant (C) for the cube root estimator.

distribution of errors, n = 50




The parabolic distribution is similar tc the rectangular and
uniformly decreasing distributions except that it reduced the

probabilities of larger errors by the square of the distance from

Zero.

Letting 1

v - 3

1" %

4.2

gv) = 9PS(v + v ) -1<v<0
=] -P va=_0
- 9P(L - S)(v - v? 0<v<l

Figures 3(g), 3(h), and 3(%) illustrate once again the same
basic results shown by the rectangular and uniformly decreasing
distributions. The better the balance, the greater the gain.

The similarity in the results of these distributions serves
to indicate that for small sample sizes there is a value of C
vhich will allow the cube-root estimator to be used on a class of
distributions. For larger sample sizes it is important to have
some idea of the amount of imbalance before choosing C. It is
possible to estimate P and S from the sample, a posteriori, and
to choose C from the results., This will change the mean square

error of the estimator but it will allow some hedging against a

loss of efficiency.
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3.6 The Use of the Cube~Root Estimator to Estimate

Changes in the Mean

Small sample surveys are often used to detect if the mean of
a population has changed over time or after some treatment.
Consider, for example, a population which has previously been
surveyed in total or, at least, by a very large sample. Then at
a later date a small sample is taken to detect if the mean has
changed. Letting uo.be the prior mean of the population, xi be

an observation made in the later survey, and X Thea

1~ Mo " Yy
y; is distributed identically with X with the exception that

Y=X" Yo

Utilizing the cube-root estimator on the sample values of y
would produce an estimator § = (1 - C)y + c;3 with the properties
that have previously been described. If the values of the first
six moments of the cube-root distribution can be estimated by using
the information from the original survey it is possible to
predetermine a value of C which 1s apt to give good results.
Further, if the distribution is fairly symmetrical the bias and

mean square error of the cube-root estimator may be quite small

compared to ;.

3.7 A Simulation to Verify the Efficiency of the

Cube-Root Estimator

In order to verify that the cube-root estimator does, indeed,

FYAPSTNONN

©tn i T N I L i b
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TABLE 5.

66

DISTRIBUTION OF ERRORS IN 100 AUDITED -

ACCOUNTS OF A WHOLESALE FIRM

Error Size ($)
y

0

-.52

-.80
-1.00
-2.00
-3.00
+0.10
+0.40
+1.00

+10.00

Y= ,0318
2
o = 1,1698

V= .0016
My = .1553
= .0403
= 3319
= ,3865

g = 1.2169

.

v £
0.00000 90
-.804145 1
-.928318 1

-1.000000 2
-1.259921 1
-1.442250 1
+0.464159 1
+0.736806 1
+1.000000 1
+2.154435 1

Original population parameters

Cube-root transformed population parameters




attain the claimed efficiencies, a set of account errors was

obtained from the auditing records of a wholesaling firm. The

data shown in Table 5 are a sample of 100 account errors, but

A 1 e e e SR e
it

they will be used as if they constitute an entire population.
Referring to Figure 3(a) it can be seen that C = 1 is both
safe and likely to produce a small mean square error when n = 3,
There is the added advantage that the cube-root estimator is quite
simple to calculate when the weighting constant is equal to one.
Equations (3.3.2) and (3.3.4) reveal that when n = 3 and

C=1

B(y) = .0302 ,

V(y) = .0101

and !

BMS(y) = .0110 .

Through the use of an electronic computer every combination of

aray

the one hundred values taken three at a time wer< picked and y
was calculated for each combination. Calculating the moments

of these actual sample values yielded;

E(y) = .00144

B(y) = .0318 - .0014 = -.0304

e L R o




i
|

V(y) = .0072

EMS(y) = .0081 .

\
\
'

{ }
The error mean square calculated from the actual sample values
is smaller than equations (3.3.2) and (3.3.4) predicted indicating
that the finite population correction, wh%ch was ignored in the
; \

development of the dube-root estimator, has more influence in

the case of the cube-root estimator than it has in the case of the

sample mean.
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4. USES OF ROO%-ESTIHAIORS IN STRATIFIED SAMPLING
\
|

4.1 Introduction

Stratified random sampling is a‘well known an commonly uéed
samﬁling technique wherein a random sample is drawn from each
of the mutually exclusive strata (or subpopulations) of the
population. This technique‘is particu%arly useful on populations
which are naturally subdiviéed into subpopulations, each of which
are more homogeneous than the whole. In such a case each stratum
mean is estimated by the mean of individual obse;vations drawn
from that stratum. If the stratum aist are known then the
stratum totals are estimable, and through them the population total
and mean ate estimable. Estimates of a population mean or total
obtained iﬁ this fashion have a variance that is smaller than
the variance of estimates obtained from a simple random sample of
the whole population. When each of the stratum means can be
estimated with smaller mean square error through use of a biased
estimator, it would seem that these biased estimators could be

used to good advantage in the estimation of the population mean.

As 1s shown below, this is not the case.
4.2 Definitions

(a) L = number of strata in population

(b) N1 = number of elements in the 1th stratum




L
(c) Zﬂi = N = total number of elements in population
1

(d) n, = size of sample from the ith stratum

i
) (e) En1 = n = total size of sample
(£) =L vy
i Ni i i
@ vy " £y 0 Vg 90 o0er Vi p)
_ LN _ , L Ny
(h) Y=L —Y, == I Iy
L P
~ L
(1) Y = Zviyi

1 B(Q) = E(g) - Y Bias of Y as estimator of Y

(k) Bi = E(yi) - Yi Bias of y; as estimator of Yi

4.3 The Bias and Error Mean Square of Y as Estimator of Y

The bias of Y as an estimator of Y is

. . _ L ., _ L _ LN _
B(Y) = E(Y) - Y = E[fwy ] - ¥ = Zw (Y, +B) - L ¥,
1 1 X 1
N _ L
- Z(wi - T;QYi + fwini .

The variance of y is, then

V(y) = V(Zwyy

L -
) = iwiv(yi)




and
. . . ; N, _
MS(Y) = V(Y) + [B(D)]Z = WGy + [, - DT, + zwinilz )

N
It is apparent that letting wy = -Nl'- will reduce the error mean

square to a minimum under the given conditions, so that

- Niz - L Niz 2
EMS(Y) = Z—z— V(yi) + [Z 3 Bi] .
N 1 N

If we now use the relationship V(yi) = FMS(yi) - (81)2, the EMS(Y)

becomes
N Ni2 “ 2 Nf 2
EMS (Y) =l [ms(yi) - Bl + [Z — B,]
N N
= - IN;[EMS(y,)] +—= I [ N/N_,BB,,
W2t SO D A
1 ko - L
= = [IN{[EMS(y,)] + ¥ I NN,BB.,] .
N1t 1 qmgp P
4.4 Investigation of EMS(Y) Compared to V(ist)
n
- 1 - - 1 i
. If Yo * N }:Niyi, and each vy = ;i- jfl Yyo which is unblased
for 71, then
MS(7_,) = 5 IN*V(,) = V(5_.) , seince all B, = 0
st/ T 2 1V Yst’ » 1 .
L 2 ~
IN; [EMS(y,)] I I NNBB,
Thismakeskn%s—.-ﬁ)l-l—_z_r——.p 1 1'% -
Vot INJV(5,) INV(F,)

7 1.
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which is a most unfortunate result, The second term is the sum
of all the L(L-1) cross-products of the Nini
which contains only L terms. In urder to clear away some of the
confusing factors, assume that each stratum has the same number
of elements and equal variance. Then each Ni = N/L and

NZ 2

B = 5 L5 s +1e - S8
N L L

2

- % {BMS(y) + (L - 1)B%}

and
L ,2
- 1 o N - 1.,
V(@iy_,) =5 L= V(y,) ==V(y) .
st N2 1 L2 i L
This, then, makes
" 2
. BSG) | (L-1)B
R 7 ) e

Therefore, 1f the biased estimator y is sufficiently efficient

compared to y and L is small, the resultant overall efficiency may be

_1ypl
comparable. However, as L increases SLV%%%- is certain to become

large enough to cause a reduction in efficiency below that of y.

It 18 easily seen, therefore, that estimators which are biased

are rather dangerous to use for estimating the population mean or

total when utilizing stratified random sampling. This is especially

true when all Bi's are in the same direction as is the case with

the square root estimator.

, -
8 divided by XN:V(yst)
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In the case of the cube-root estimator it is possible for the
bias terms to be positive for some strata and negative for others.
However, the purpose of such a survey, usually, is to detect a
consistant bias in error, the very condition which will cause the
cube-root error to be inefficient.

Root-estimators, therefore, are not recommended for use in
estimating population means or totals in stratified sampling. They
are recommended for use in the estimation of strata means and
totals when the n, are small and the distributions within strata

1
are apt to be positively skewed.




5. CONCLUSION

5.1 Summary

The square-root estimator of the form ; = (1-0)y+ dﬁz,

u, - f;; » has been developed for populations consisting of all
positive numbers. It was found that for small sample sizes from
populations with a large positive skewness there is an optimum
value of C (Co) which will make the mean square error of ;
smaller than that of the sample mean. Indeed, it was found that
any value of C between zero and Zcowill have this effect to some
extent and that, for a particular sample size, values of C can
be determined which will produce smaller mean square errors for
a wide class of positively skewed distributions.

2‘_'.2
was also Investigated. This form was found to produce improvement

The general square-root estimator of the form y = Cl;'+ c

in the mean square error at the optimum values of C, and C,.

1 2
The wide variability in the values of C1 and 02 between types of

distributions made the use of the general square-root estimator
a bit unsafe if the form of the distribution is not known a

priori.

The cube-root estimator of the form y = (1 ~ C)y + C;3

v, - yila, was developed for use on populations consisting of

both positive and negative values. It was found that the mean
square error of this estimator is quite sensitive to asymmetry

in the population. However, for populations of errors which are
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predominantly zero the cube-root estimator performe. quite well
in comparison to y. It also showed promise for the estimation

of small changes in the means of populations for which a previous
' large sample survey has eatabiished good estimators of the higher
moments.

An investigation of the use of biased estimators in
stratified sampling indicated that root-estimators can be used
for the estimation of within stratum means and totals with good
results. They should not be used for estimating the population
mean or total in stratified sampling, however, because the bias
accumulates in the total and overcomes the gains made within the

individual strata.
5.2 Future Research

Although the aquare-root and the cube-root estimators show
promise for practical application in small sample estimation,
there are several aspects of the problem which need further
investigation. Of primary importance is a better description
of the classes of distributions for which the root estimators
are advantageous. The sampling practionmer could make use of a
more complete set of model distributions than those exhibited
in this paper, It also appears likely that the square-root

estimator could be improved by the addition of a constant to

populations which have values between zero and one.
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This paper is, admittedly, but a beginning in the investigation
of bilased estimators which exhibit a reduced mean square error.
However, we are hopeful that the properties that have been

determined for these estimators will encourage further investigation.
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